Laser Cutting Articles


Filter Content

Laser cutting

Air cutting revisited

March 13, 2007 | By Erin Chasse, Mickey Lawson

Fabricators are increasingly using compressed air in laser cutting, instead of relying on laser assist gases such as oxygen and nitrogen. Recent findings reveal that shop air can be used on more material types and thicknesses, including parts on which the edge quality is visible.

Continue Reading


Automated parts removal

Flexible automation of laser cutting, material handling

March 13, 2007 | By Elizabeth Kautzmann

What's the point in purchasing an expensive laser cutting machine if you are going to waste money-making opportunities by unloading parts manually? Good nesting software, proper maintenance, and the latest unloading technology can help to make automated laser cutting and unloading a reality.

Continue Reading


Laser cutting device

Breaking speed barriers in laser cutting

February 14, 2007 | By Thomas Burdel, Pieter Schwarzenbach

A real breakthrough in high-speed laser cutting occurred in 2005. Two additional parallel kinematic drive axes were placed near the point where the laser exits the head, creating a laser cutting machine with one dynamic and light cutting torch capable of independent movement along two axes but working in precise synchronicity with the machine's more sweeping movement of the laser head. This new approach opened up new frontiers and much higher limits in processing speed.

Continue Reading


MPI laser cutting

Cutting lead-times with lasers

February 13, 2007

An expanding metal fabrication shop invests in lasers to help it produce precision parts and manage tight lead times.

Continue Reading


High speed laser cutting

A new dimension in lasers

January 17, 2007 | By Thomas Burdel, Pieter Schwarzenbach, Dr. Per Stenius

High-speed laser cutting is a recent result of increased laser power and high acceleration motion technology, which have improved cutting speeds. Tilt beam 2D-3D systems allow laser cutting of small 3D parts, bevel cutting on 2D sheet metal and 3D parts, 3D trimming of small deep drawn parts, and processing of holes and cut-outs in hydroformed parts.

Continue Reading


Waterjet laser cutting

Achieving precision and diversification with laser and waterjet technologies

January 9, 2007 | By Frank J. Arteaga

Both laser and waterjet cutting systems produce precision parts, and in many applications, either is appropriate. This article, which discusses the benefits and limitations of both technologies, can help you decide which is best-suited for your operation. In some cases, utilizing both can increase manufacturing flexibility and your business capabilities.

Continue Reading


CO2 lasers

High-powered lasers take a bite out of plate

December 12, 2006 | By Jason Hillenbrand

CO2 lasers are available in wattages that can cut plate more than 1 in. thick. The wattage, however, isn't the only factor that affects total speed and power. The assist gas chosen and the mode of the laser also influence final results.

Continue Reading


3 steps to better laser maintenance

October 10, 2006 | By Bernie Olguin, Dru Schwartz, Jeff Hahn

Laser machine users know it, but often ignore it. Laser manufacturers swear by it, but often don't push it. It's maintenance, and it should be the watchword of anyone who owns and operates a laser.

Continue Reading


Expanding upward and outward

September 12, 2006 | By Dan Davis

Watson Engineering didn't have to add any laser operators during its most recent expansion effort. The reason was technology advancements associated with material handling and modern laser cutting devices.

Continue Reading


A breath of fresh air

August 8, 2006 | By James Rogowski, Mickey Lawson

Two standard laser assist gases are oxygen and nitrogen. However, a third gas — shop air — has become a viable alternative.

Continue Reading


Optimizing CO2 laser use: Part II

March 7, 2006 | By David Bell

As explained in Part I of this two-part series, many factors can affect laser processing efficiency. This article explains basic laser beam delivery requirements; discusses laser gases and supply methods; and lists common problems caused by using incorrect pressure, flow, and laser speed.

Continue Reading


Selecting equipment for maximum productivity

February 7, 2006 | By Eric Lundin

H. Meeuwsen B.V., a fabricator in Yerseke, Netherlands, found that purchasing a laser that could handle parts up to 12 m long greatly enhanced its capabilities. It augmented this purchase with a tandem press brake. One side of the brake has an 8-m capacity; the other has a 4-m capacity. This gives the company the ability to bend 12-m parts, if necessary, or to run the two brakes simultaneously for smaller items. Subsequent growth in customer demand led the company to consider purchasing a second laser. A careful analysis revealed that the company could do just fine with a smaller laser, so it purchased a laser with a 3-m capacity.

Continue Reading


Optimizing CO2 laser use: Part I

January 10, 2006 | By David Bell

Many factors can affect laser processing efficiency. This article, Part I of a two-part series, stresses laser system maintenance and discusses factors that can affect beam quality and efficiency—namely, impurities introduced by laser gases and gas supply systems and how to prevent them. It also has a supply system requirements list. Part II discusses beam delivery to the workpiece and the gases used to process the material.

Continue Reading


Looking to higher power for laser speed?

December 13, 2005 | By Thorsten Frauenpreiss

Laser beam sources with higher output powers and improved beam qualities have expanded the range of laser applications. Most system's lasers have power higher than 2 kW. Higher power does not always increase the speed, however. Increasing the power during thermal cutting value may cause increased heat-affected zones on the material and place higher demands on the motion system, thus limiting the cutting speed. A new patented cutting machine, the diffusion-cooled CO2 slab laser, may offer improved beam quality and smaller focus diameters under conditions comparable to conventional fast-axial-flow CO2 laser with 4-kW output power.

Continue Reading


Growing gains with lasers

November 8, 2005 | By Stephanie Vaughan

Jeff Adams may have taken the nontraditional route in manufacturing by starting out in the laser equipment vendor community, but he has since moved to the job shop side of the industry, using his laser knowledge and expertise to help grow his 12-year-old laser job shop in Libertyville, Ill.

Continue Reading